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Abstract-The transient response of a half-space containing a subsurface inclined semi-infinite
crack excited by a dynamic antiplane loading on the surface of the half-space has been investigated
to gain insight into the phenomenon of the interaction of stress waves with material defects. The
dynamic load is suddenly applied and then it moves at a constant speed along the free surface.
The solutions are derived for all load speeds (subsonic and supersonic) and are determined by
superposition of a proposed fundamental solution in the Laplace transform domain. The fun­
damental problem to be considered is the exponentially distributed traction in Laplace transform
domain applied on crack faces. The method of analysis is based on integral transform techniques
and the Wiener-Hopf technique. The exact closed-form transient full-field solutions of stresses and
displacement are obtained in compact formulations. These solutions are valid for an infinite length
of time and have accounted for the contributions of incident, reflected and diffracted waves.
Numerical results of the transient stresses for the interior of the half-space are obtained and the
results of the limit case of zero load speed are compared with the corresponding static values.
Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

The difficulty in determining the transient stress field in a cracked elastic body subjected to
dynamic loading is well known. A considerable amount of research has been directed
towards the solution of problems involving the interaction of stress waves with cracks and
boundaries to improve understanding of the behavior of material failure under dynamic
loading. The early solutions of waves generated by moving loads were confined to the
steady state response of the medium. Transient response due to a concentrated force moving
in an infinite medium was determined by Payton (1964) and the transient solution for a
force moving in a half-space was solved by Gakenheimer and Miklowitz (1969). In con­
ventional studies of a semi-infinite crack in an unbounded medium subjected to a spatially
uniform crack face traction, the complete solution is usually obtained by integral transform
methods together with direct application of the Wiener-Hopf technique (Noble, 1958) and
the Cagniard-de Hoop method (de Hoop, 1958) of Laplace inversion. If the crack face
traction distribution is spatially nonuniform and a characteristic length is introduced, then
this procedure using integral transformation methods does not apply. The problem of an
elastic solid containing a semi-infinite crack subjected to concentrated impact loading on
the faces of the crack has been studied by Freund (1974). He proposed a fundamental
solution arising from an edge dislocation climbing along the line ahead of the crack tip
with a constant speed to overcome these difficulties of the case with a characteristic length.
The solution can be constructed by taking an integration over a climbing dislocation of
different moving velocity along the crack tip line. Basing their procedures on this method,
Brock (1982, 1984) and Brock et al. (1985), and Ma and Hou (1990, 1991) have recently
analyzed a series of problems involving a semi-infinite crack subjected to dynamic impact
loadings. Lee and Freund (1990) analyzed fracture initiation of an edge-cracked plate
subjected to an asymmetric impact.

Whenever dynamic loading is applied to a body with an internal crack, the resulting
stress waves may initiate crack growth. Few solutions for a cracked elastic solid subjected
to dynamic loading are available. Exact transient closed-form solutions for a stationary
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Fig. 1. Configuration, coordinate systems of a subsurface inclined crack subjected to dynamic
loading moving with supersonic speed on the half-space.

semi-infinite crack subjected to a suddenly applied dynamic body force in an unbounded
medium have been obtained by Tsai and Ma (1992) for the in-plane case, and by Ma and
Chen (1993) and Brock (1986) for the antiplane case. The problem to be considered in this
study is the transient response of an elastic half-plane, with an inclined subsurface crack
extending from infinity to a location near the half-plane surface. The cracked half-plane is
subjected to a dynamic antiplane loading moving with constant speed on the half-plane
surface as shown in Fig. 1, the moving speed can be either subsonic or supersonic. To the
author's knowledge, most solutions for scattering of elastic waves by a crack, located in
the immediate vicinity of a free surface, are given for incident plane time-harmonic waves
[e.g. Achenbach and Brind (1981) and Brind and Achenbach (1981)]. The only available
transient analysis is presented by Ma and Chen (1994) who consider the special case of
applying dynamic loading with zero moving speed. The propagation of stress waves through
a semi-infinite homogeneous medium with a half-plane boundary, which is due to applying
dynamic loading on the boundary, is not a difficult subject. A pre-existing fault inside the
medium would disturb the propagation waves and make the theoretical analysis much more
difficult than in an homogeneous medium. The transient response of the cracked half-plane
is analyzed as the superposition of the fields in an uncracked half-plane and the fields
generated by appropriate surface tractions on the faces of the crack in the cracked half­
plane. In analyzing this problem, the reflections and diffractions of stress waves by the half­
plane boundary and by the crack will generate an infinite number of waves, that must be
taken into account. This problem involves a characteristic length which makes a direct
solution by standard techniques difficult. A new fundamental solution is used for over­
coming these difficulties. This alternative fundamental solution is successfully applied
towards solving the problem and is to be demonstrated as an efficient methodology. The
final formulations for stresses and displacement are expressed explicitly and the dynamic
effect of each wave is presented in a closed form. The results are valid for infinite waves
that are scattered from the crack tip and reflected by the half-plane boundary. Numerical
results are presented for the shear stresses at points of observation in the interior of the
body and for the loading moving with various speeds along the half-plane free surface.

2. REQUIRED FUNDAMENTAL SOLUTIONS

As usual in problems of the type considered here, superposition of solutions plays a
significant role. The solutions of the problem considered in this study can be determined
by superposition of the following problems. Problem A treats the dynamic concentrated
force moving with constant velocity on a half-plane medium without a crack, which induces
a traction on the planes that will eventually define the semi-infinite crack faces. In problem
B, an infinite body containing a semi-infinite crack is considered in which the crack faces
are subjected to tractions which are equal and opposite to those on the corresponding
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planes in problem A. Problem C considers a half-plane free surface subjected to the waves
which are generated by the crack in problem B.

The solution for problem A is well known and problem C can be solved by using the
image method. Hence, problem B in the above mentioned three fundamental problems is
the only one which needs careful analysis. Reflected and diffracted waves are generated by
the semi-infinite crack to eliminate the stress induced by incident waves on the traction-free
boundaries of crack faces. For most of the dynamic problems, the incident waves can be
represented in an exponential functional form in the Laplace transform domain of time.
The exponentially distributed loading acting on the crack faces can be analyzed, giving
rise to a very useful result called the fundamental solution for the problem. Then, the
corresponding field quantities can be determined directly by superposition over this fun­
damental solution. The superposition scheme proposed in this study, unlike the usual
superposition methods which are performed in the time domain, is performed in the Laplace
transform domain.

The solution for applying an exponentially distributed loading on the crack faces in the
Laplace transform domain will be referred to as the fundamental solution. The fundamental
problem can be viewed as a half-plane problem with the material occupying the region
y ?' 0, subject to the following boundary conditions

f.,Ax,O,p) = e qx
- Cf) < x < 0,

w(x,O,p) = ° °< x < 00,

(I)

(2)

where p is the Laplace transform parameter and Yf is a constant. The overbar symbol is
used for denoting the transform on time t. The governing equation can be represented by
the following two-dimensional wave equation

(3)

where b is the slowness of the transverse wave given by

b = 1/v = Ip/IJ
,S V t"'"

in which w(x,Y, t) is the displacement normal to the xy-plane; Us is the shear wave speed, fl
and p are the respective shear modulus and mass density of the material. The non-vanishing
shear stresses are

OW
'x= = fl;;-·ux

(4)

This problem can be solved by the application of integral transforms. The solution is
obtained by applying the one-sided Laplace transform over time, the two-sided Laplace
transform over x under the restriction of Re (Yf) > Re (J,), and finally implementing the
Wiener-Hopftechnique. The solutions ofstresses and displacement expressed in the Laplace
transform domain for the boundary conditions (I) and (2) are

Ae-pay

f~=(A,y,p)=., ,,'
p(b+Yf) 1,2 (f7 - J.) (b _ }.) li-

e-pay

W*(}.,y,p) = ---------­
flp2(b +Yf) 1/2 (Yf - ).)(b - A) 1/2
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The inversion fonnula for the two-sided Laplace transform (Achenbach, 1973) leads
to the following expressions

- I i (b+A)1/2 e- P(a
y

-icx)

< (x y p) = - dA
yz " 2ni (b ) 1'2 ( 1) ,

f"A +11' 11-/1.

where r A is a suitable path of integration in the complex ie-plane and

(5)

(6)

(7)

The fundamental solutions presented in eqns (5)-(7) will be used to construct the
reflected and diffracted waves generated by the crack in the following analysis.

3. EXACT TRANSIENT FULL-FIELD ANALYSIS

The investigation of a subsurface crack subjected to dynamic moving loading is an
important topic in material failure analysis. The problem considered here is an inclined
semi-infinite crack located under the surface ofa half-plane (Fig. 1). Having two coordinate
systems is convenient for the following analysis since the surface of the half-plane is not
parallel to the crack faces. The origins of the two coordinate systems (x,y) and (x,y) are
both located at the crack tip as shown in Fig. 1. The planar crack lies in the plane y = 0,
x < 0 and the inclined angle of the crack is ¢. The coordinate transfonns and stress relations
between these two systems are

x = xcos¢+ysin¢,

y = -xsin¢+ycos¢,

!yz = <xz sin ¢ + <Yz cos ¢.

(8)

(9)

(10)

(11)

The problem to be considered in this study has a characteristic length. A direct attempt
towards solving this problem by transfonn and Wiener-Hopf techniques is not applicable.
The transient elastodynamic problem will be solved by superposition of the fundamental
solutions obtained in the previous section in the Laplace transfonn domain. The transient
solutions are composed of an incident field, reflected field and diffracted field, which will
be denoted by superscripts of i, rand d for the case of subsonic moving speed and additional
superscripts of I, Rand D will be used for the supersonic case, respectively. The incident
wave is the response for applying a dynamic loading that moves along an uncracked half­
plane with constant velocity. The reflected and diffracted waves are generated through
application of an opposite traction at the crack surface thus eliminating the stress induced
by the incident wave.

Consider a half-plane medium which is stress-free and at rest. At time t = 0, an anti­
plane concentrated dynamic load of magnitude Q is applied at the free surface of a half­
plane at position (I, h). For t > 0, this concentrated load travels on the surface along the
positive x-axis with a constant speed vo. The time dependence of the loading is represented
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by the Heaviside step function H(t). The incident fields of displacement and shear stresses
in the Laplace transform domain can be obtained as follows

11/(X,y,p) = ~ f. Q" eP[,(y-h)+,l(x-l)] dA.,
2m r, IlPri(1 +A.Vo)

fi (x y. p) = _1_ r _Q_e P[,(y-hj+,l(X-I)] d)
yz "" 2ni Jr, 1+A.Vo ",

fi (x Y p) = _1_ f. AQ eP[,(y-h)+A(x-l)] dA.
xz " 2ni r, ri(1 +AVo) ,

(12)

(13)

(14)

where rio is a suitable path of integration in the complex A-plane. The Laplace transform is
inverted by a modification ofCagniard's (1962) technique due to de Hoop (1958). For this
technique eqns (12)-(14) are converted into the Laplace transform of a known function,
so that the Laplace transform can be inverted by inspection. In the subsequent calculations
p is assumed to be a real and positive number. The transient solution has different forms
depending on the speed of the moving load relative to the shear wave speed. In particular,
the terms supersonic and subsonic refer to the cases when the load speed is greater than the
shear wave speed (vo > vs) or less than the shear wave speed (vo < vs), respectively.

The detailed inversion of Laplace transform for (12)-(14) to time domain can be found
in a paper by Ma and Chen (1994), and the results are

+ Qo[t-c(x-l) +Jb2-c2(y-h)]H(vo-vs)H(bcos O-c), (15)
Vo

Q 0[t-c(x-l)+Jb2-c2(y-h)]H(vo -vs)H(bcosO-c), (16)
voJb2V6 -1

+ Q H[t-c(x-l) +Jb2-c2(y-h)]H(vo-v.)H(bcos O-c), (17)
ttJb2V6 -I

where

and c = l/vo is the slowness of the speed of the moving load. The symbols 00 and HO
represent the Dirac delta function and the unit step function, respectively. The contribution
of the second term shown in (15)-(17) only exists for the supersonic case and represents a
plane wave. For the subsonic case, only the first term is left in the transient solution
expressed in (15)-(17).

The incident wave will induce a stress field f}z(.X, 0, p) along the crack face, conveniently
expressed in the x-y coordinate system as
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10 = Icosep+hsinep, ho = -/sinep+hcosep.

The applied traction on the crack face, in order to eliminate the stress induced by the
incident wave as indicated in eqn (18), has the functional form ePix

. Since the solutions of
applying traction eP~.<: on crack faces have been solved in Section 2, the reflected and
diffracted fields generated from the inclined crack can be constructed by superimposing the
incident wave traction that is equal and opposite to eqn (18). When we combine eqns (5)
and (18), the solution of the first reflected and diffracted waves for fyz and f-xz in the Laplace
transform domain can be expressed as follows:

-.d+. '( - -) Q i i '12 G(IlI, '12) -PIa h +" I) -p(a2v-~,x)d dr", x,y,p = - - - . e 10 "10 e '. '12 '11'
. 4n2 r r 0:2 [I +VO('11 COSep-'Y. 1 Slllep)]

11 1 112

where

The above presented solutions for stresses are expressed in the x-y coordinate system.
If the solutions are expressed in the x-y coordinate system, then a small modification should
be made to account for the effect of coordinate transformation, and the result for f yz is

where

K1 ('12) = cos ep - '12 sin ep.
0: 2

This equation constitutes a double inversion integral where the paths r~1 and r~2 refer
to Laplace inversion contours in the '11-plane and the '1rplane, respectively. The inverse
transformation is carried out here by the Cagniard-de Hoop technique. Cagniard contours
are introduced here in both the '11- and '1rplanes by setting

(20)

(21)

Equations (20) and (21) can be solved for '11 and '12 to yield
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+ t, Coseo .sineo 2 2 2 li2
1Jf = ±l-R-(l,-b R o) ,

Ro 0
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(22)

(23)

where (Ro, eo) and (d, 1jJ) are the respective polar coordinates of the source point and field
point, and

In the 1J,-plane (or 1J2-plane), eqn (22) [or (23)] describes a hyperbola which is denoted
as the Cagniard contour. The 1J,- and 1J2-integrations are then shifted on to Cagniard
contours along which t l and t 2 are both real and positive. The two Cagniard contours
must be superimposed in this technique for different locations of source and field points.
Continuing from this, the reflected and diffracted waves generated from the crack can be
automatically constructed. Because G(YJ" YJ2) possesses a pole at YJI = YJ2, the contribution
of the pole has to be taken into account in the change of integral paths from YJ 1 to t1and '12
to t 2 • Recall from eqn (19) that a pole term arises, representing the reflected waves. The
contribution of this pole represents the reflected r wave generated from the crack surface
by the incident cylindrical wave. The reflected r wave can be shown to pass the region for
IjJ > n - eo. By using the Cagniard-de Hoop method of Laplace inversion, reflected field
in time domain is obtained in a simple closed form as follows

(24)

where

11 = Icos(2¢)+hsin(2¢), hi = Isin (2¢)-hcos (2¢).

The diffracted d wave generated from the crack tip by the incident cylindrical wave is
considered next. Recalling that p is real and positive, the '11- and YJ2-integrations are shifted
on to Cagniard contours. The stress 7:;2 induced by the diffracted wave from the crack tip
is found to be

(25)

where

For the supersonic case (vo > vs), the incident wave contains an additional plane wave
and this plane wave will also be reflected and diffracted from the semi-infinite crack. The
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•

Fig. 2. Wave fronts for reflected and diffracted waves generated from the inclined crack by incident
plane and cylindrical waves.

configuration of the wave fronts for the supersonic case is shown in Fig. 2. The reflected
wave (R wave) and diffracted wave (D wave) generated from the crack by the incident
plane wave are constructed from the contribution of the pole [i.e. I +VO(tTI cos
4> - rt.l sin 4» = OJ shown in eqn (19), which is tTl = - C cos 4> + -Jb2

- c2 sin 4>. The results
are expressed as follows

Q Jb2v~-lcos24>+sin24> ~ .
•:z(x,y, t) = - - <5[t- v b2 -c2 (ycos24>-xsm24>+h)

Vo Jb2v~-1

- c(x cos 24> + y sin 24> -l)], (26)

where

For the subsonic case, the incident cylindrical shear wave (i wave) will generate only
a reflected wave (r wave) and a diffracted wave (d wave) from the subsurface crack. After
some later time, these two waves will be reflected from the free half-surface and are indicated
as the rr wave and dr wave. The solutions for rr and dr waves can be constructed by
employing the method of images, which can be obtained from the solutions of rand d
waves, hence the results are omitted here. The reflected rr and dr waves will arrive at the
crack at a later time. The reflected waves (rrr and drr waves) and diffracted waves (rrd and
drd waves) generated by the crack due to incidenting rr and dr waves can be constructed
following the previously indicated analysis. For the supersonic case, additional waves
should be included which are initiated by the incident plane wave. There are four waves,
i.e. DRD, DRR, RRD and RRR waves, will be generated by the crack due to incidenting
RR and DR waves. The correspondent configuration of the wave fronts for the supersonic
case is shown in Fig. 3.

The complete full-field solutions that account for the contributions of all the reflected
and diffracted waves are finally obtained explicitly. The complete transient solutions for
stresses and displacement can be simplified into a form as follows

(28)
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Fig. 3. Wave fronts of the incident, reflected and diffracted waves for a short time period after the

dynamic loading is applied on the half-space.

For the subsonic case, the transient solutions only consist of the first two terms in eqn
(28). The first term with one summation is the contributions of incident cylindrical wave
and reflected waves which are only generated by reflected waves, i.e. i = 0 for incident
cylindrical wave, i = 1 for r wave, i = 2 for rr wave, i = 3 for rrr wave. The explicit forms
are expressed as follows

(29)

(29')

(29")

where

y = i, i = 0,2,4,6, . .. ')' = i+ 1, i = 1, 3, 5, ...

10 = I, ho = h,

;/2-1

Ii = Icos (i¢)+hsin (i¢) + L: 2h sin (2m¢), i=2,4,6, ...
m=O

i12-1

h;= -/sin(i¢)+hcos(i¢)+L: 2hcos(2m¢), i=2,4,6, ...
m=O

(i-l)/2

Ii = Icos«i+l)¢)+hsin«i+l)¢)+ L: 2h sin (2m¢), i= 1,3,5,7, ...
m=l

(i-l)j2

h;=/sin«i+l)¢)-hcos«i+l)¢)- L: 2hcos(2m¢), i=1,3,5,7, ...
m=l

The second term in eqn (28) with three summations comes from the contributions for
diffracted waves and reflected waves which are generated by diffracted waves, i.e. k = 0,



2234 Chien-Ching Ma and Lyang-Rung Hwang

1= O,} = 0 for d wave,} = 1 for dr wave,} = 2 for drr wave; k = 0, 1= 1,} = 0 for drd
wave,} = 1 for drdr wave,} = 2 for drdrr wave; k = 0, I = 2,} = 0 for drdrd wave,} = 1
for drdrdr wave; k = 1, 1= O,} = 0 for rrd wave,} = 1 for rrdr wave; k = 1, 1= 1,} = 0
for rrdrd wave,} = 1 for rrdrdr wave. k = 0 can be seen here to consist of the diffracted d
wave which is diffracted by the incident wave and the sequence of diffracted waves and
reflected waves which are generated by the d wave. k = 1 consists of the diffracted rrd wave
which is diffracted from the rr wave by the crack tip and the sequence of diffracted and
reflected waves which are generated by the rrd wave. The index notation} = 0 will stand
for the diffracted waves and} =I- 0 stands for the reflected waves. The detailed results are
expressed in Appendix A.

However, for the supersonic case (vQ > vs), the incident waves generated by the moving
loading consist of not only a cylindrical wave but also a plane wave (Fig. 1). We have
already expressed the complete expressions of the reflected and diffracted waves by an
incident cylindrical wave in eqn (29) and Appendix A. The reflected and diffracted waves
generated by the incident plane wave are expressed in eqn (28) for the last three terms. The
term with one summation is the solution of incident plane wave and reflected waves which
are generated by pure reflected waves, i.e. r = 0 for incident plane wave, r = 1 for R wave,
r = 2 for RR wave, r = 3 for RRR wave and all these waves are plane waves. The explicit
forms can be expressed as follows

where

(30)

(30')

(30")

y=r+I r=I,3,5 ...
.,

y=l r = 0,2,4, 6 ...

tt = c(x-l)-Jb2 -c2(y-h),

tt = Jb 2 _c2
[( -I)i-IYr _ 1 cos ¢-Xi _1 sin ¢+h] +C[Xi-i cos ¢ + (-Iy' IYi-I sin ¢-n.

The term with two summations (i.e. r = 0) comes from the contributions for waves
which are diffracted by the crack tip only once, i.e. k' = O,} = 0 for D wave,} = 1 for DR
wave,} = 2 for DRR wave; k' = 1,} = 0 for RRD wave,} = 1 for RRDR wave,} = 2 for
RRDRR wave; k' = 2, } = 0 for RRRRD wave, } = 1 for RRRRDR wave. The cor­
respondent results are expressed in Appendix B.

Finally, the term with three summations comes from the contributions for waves which
are diffracted from the crack tip at least twice. We have k' = 0, r = I,} = 0 for DRD wave,
} = 1 for DRDR wave,} = 2 for DRDRR wave; k' = 0, r = 2,} = 0 for DRDRD wave,
} = 1 for DRDRDR wave; k' = 1, r = 1,} = 0 for RRDRD wave,} = 1 for RRDRDR wave.
The complete results are expressed in Appendix C.

The number of reflected waves (i.e. n, s, m, n' and s') is dependent on the location and
the inclined angle ¢ of the crack, the speed of the moving load and the position where the
dynamic point loading is applied. The results are expressed as follows

If ¢2J+ I < nl2 < ¢2i- I, then n = j;

If v¢ < ¢I < (v+ I)¢, then s = v+2;
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If v</> < nl2 < (v+ I)</>, then m = v+ I,

where

~1(/2j+l)
</>2j+l = cos ~'

2j+ I

R2/+ I = (l~j+ I +h~/+ I) 1
/ 2,

n

12j+1 = Icos2(j+I)</>+hsin2(j+1)</>+ L 2hsin(2p</»,
p~l

n

h2j+1 = Isin2(j+ 1)</>-hcos2(j+ I)</>- I 2hcos (2p</».
p~l

2235

( ~k) (C) nIfn-cos~1 -~- < cos- 1
--;- +2k</> < -2 and

R2k l-o

n
+ (2k+2)</> ~ 2' then n' = k:

Ifn - cos - I (~) ~ cos ~ I (~) + 2k</> then 5' = 2k*, k* is the maximum value ofk ;
R lk l-o

Ifn-cos- 1 (i:J < COS~I (:J+2k</> and COS~1 CJ+(2k+2)</> ~~,

and n - (t + I)</> < cos - I (~) < n - t</> < nI2 then 5' = t,
Vo

where

10 = I, ho = h,

k~I

Ilk = I cos (2k</» + h sin (2k</» + L 2h sin 2m</>, k = 1,2, 3, ...
m=O

k~l

h2k = -/sin (2k</»+hcos (2k</» + I 2hcos2m</>, k = 1,2,3, ...
m=O

4. NUMERICAL RESULTS OF TRANSIENT SOLUTIONS

The geometric configuration considered in this study is an inclined semi-infinite crack
located under the surface of a half-plane. For the subsonic case, the incident wave generated
by the dynamic moving antiplane loading will be diffracted from the crack tip and reflected
from the crack surface as d and r waves, which will be reflected from the half-plane and
interact with the inclined crack again at a later time. These waves will reflect back and forth
between the half-plane and the crack, which will generate an infinite number of reflected
and diffracted waves.
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The complicated exact full-field solutions have been determined in the previous section
in a compact form and will be used for numerical calculation. The transient response to a
dynamic moving loading will be investigated numerically here with a Heaviside function
H(t) time dependence and with unit magnitude applied at ( - 25, 10) and moving towards
the positive x-direction with subsonic speed. The inclined angle ¢ of the crack is chosen to
be 30°. It is worthy to note that only the incident wave and the second reflected rr wave
will pass through the crack tip and generate a sequence of diffracted and reflected waves;
the other pure reflected waves (i.e. rrr, rrrr, etc.) will only reflect back and forth between
the crack face and the half-plane surface. Hence, in this particular case, k is equal to 0 and
1, and the associated wave fronts over a short time period are shown in Fig. 4. The field
points located at r = 5, 8 = 30", 60° and 120" are selected for analyzing the transient
response for different moving speeds of the loading, where rand 8 are polar coordinates
defined from the x-axis. The transient shear stresses of these points are plotted in Figs 5~7.
The time has been normalized by dividing bRa where Ra is the distance from the applied
load and the crack tip. The corresponding static values for zero moving speed are also
indicated in these figures. The incident and purely reflected waves are singular at their wave
fronts while the diffracted waves have finite jumps at their wave fronts. For these particular
field points we have investigated, the arrival times for rrd and drd waves is nearly the same,
which is also indicated in Fig. 4. In these figures the transient stresses for the zero moving
speed of the loading tend toward the corresponding static value after the first few waves
have passed the field points. The transient shear stresses T XI for these material points are
plotted in Figs 8-10. The numerical results plotted in Figs 5~10 reveal that the stress shows
a dynamic overshoot as compared to the corresponding quasi-static loading. It is noted
that the magnitude of the dynamic overshoot increases as the moving speed increases.

Fig. 4. The configuration of the wave fronts for a short time period after the dynamic loading is
applied on the half-space and moving with subsonic speed.

3.5 -,-------------------,

3.5

-- Vo=O.
~ vo::;;o.z v.
~vo=O.5 v •
.............. vo=O.8 v.
- - - static

0.5

2.5

~. 1.5..r;:"

1.5 2.5

vst/R
Fig. 5. Transient shear stress 1:" for the field point located at r = 5. 0 = 30' due to impact loading

applied at (~25, 10) and moving with subsonic speed.
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~
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Fig. 6. Transient shear stress t" for the field point located at r = 5,0 = 60 due to impact loading
applied at ( - 25, 10) and moving with subsonic speed.
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Fig. 7. Transient shear stress t" for the field point located at r = 5,0 = 120' due to impact loading
applied at ( - 25, 10) and moving with subsonic speed.
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Fig. 8. Transient shear stress t" for the field point located at r = 5,0 = 30 due to impact loading
applied at (- 25. 10) and moving with subsonic speed.

5. CONCLUSIONS

Most of the problems which have been studied in the development of fracture mech­
anics are quasi-static. Because of loading conditions and material properties, numerous
problems have existed for which the assumption of quasi-static deformation is invalid, and
the inertia of the material must be taken into account. The propagation of stress waves
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Fig. 9. Transient shear stress Ie for the field point located at r = 5, () = 60' due to impact loading

applied at (-25, 10) and moving with subsonic speed.
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~ vo=O.5 v •
............ v.,=O.8 v.
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3.51.5 2.5

vst/R.
Fig. 10. Transient shear stress I" for the field point located at r = 5, () = 1200 due to impact loading

applied at (-25, 10) and moving with subsonic speed.

through an unbounded medium is not a difficult subject. However, if boundaries are
introduced, reflected and diffracted waves will be generated from boundaries, making the
problem much more complicated. The problem of the diffraction of elastic waves by an
internal crack is of considerable importance in a variety of engineering applications. In
fracture mechanics the interest is in the determination of the stress field near the crack tip
in order to study the phenomenon of crack propagation under dynamic loading.

The transient response of a half-space containing a subsurface inclined crack has been
considered in this study to gain understanding of the interaction of stress waves with
material defects. This problem contains a characteristic length and is solved by superposition
of proposed fundamental solutions in the Laplace transform domain. The exact transient
full-field solutions for stresses and displacement over a long period of time are obtained in
this study. The complicated closed form for transient solutions is expressed in a compact
form which accounts for all contributions coming from incident, reflected and diffracted
waves generated from the crack and the half-plane boundary. The presented transient
solutions are valid for both subsonic and supersonic cases, but the numerical calculations
are only investigated for the subsonic case. For the special case of the moving speed of the
dynamic loading equal to zero, the transient solution will approach the correspondent static
value after the first few diffracted waves have passed the field points. The numerical result
for the dynamic analysis shows an overshoot and the magnitude of the dynamic overshoot
increases as the moving speed increases. It is, therefore, possible that crack propagation
does not occur under static loading, but the material may fracture when the same system
of loads is rapidly applied and generates waves.
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APPENDIX A

The detailed results for the second term in eqn (28) are expressed as follows

where

-Q f' f'" fa, fa~v,k.I = - .. , ..• FUN3,.u dtk+'+1 dtk+, ... dtk• l dr,
2rr'(2rr)'/-I hk hR,,, 2hb 2bh

bk = b(Ro2k+~+21h),

a , = t-bdi -21hb, a', = r-b~-21hb,

a,,+ I = t-bdi-t, -t2 -'" -t,.-2(l-1')hb, v = 1,2,3 , I

a;+l =r-bdi-t , -t2 -···-t,-2(l-v)hb, v= 1,2,3 ,1

(AI)

(A2)

(A3)
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FUN2 - 0 [Stl+k+P~' G(Sf.k+ I' '1F+,) G(S± ±)
'j.k,! - P 2.k+2' Tfk+3 •••

2 + 2 1/2 ± ±.(b -S',/+k+p+,) I+Vo('1k+1 COSr/J-lXk+1 smr/J)

(
as± )( as± ) (as± )(as+ )]G(S± +) +~ +~ + 2,k+I+1 l,k+l+p+2

2,k+f+ 1, I1k+l+2 - ot
k

+ I - Otk +
2

•.• - atk+/~ 1 Oh+l+p+2 '

G(S± + )(+ aSf.k+I)(+ aSf.k+2) (+ aSf.k+l+l)(OStk+I+P+2)]
',k+l+ I' '1k+1+2 - alk~ 1 - alk+2 ... - Olk+l+ 1 0Ik+l+p+2 '

in which the operator "Op" is "Re" or "1m" depending on whether I is even or odd and

~ Ik+ I cos 0 0 ,2k ' sin 0 0,'k, b" 1/2
S',k+1 = R +l-R--(lk+l- R O,2k) ,

O.2k O,2k

+ h+v+! sinq) .cos¢ 2 2 2 li2
S"k+HI = 2h +1~(tk"'~1-4b h)·, V= 1,2,3, ... ,1

+ __ Ik+l+p .• , cos I/Ij + ,sin I/Ij (/2 -b'd')'!'
'1k+I+2 - d- I d k+l+p+2 .1 ', ,

~ Ik+c+l sinr/J .cosr/J , , , I"
'1"+>+1=- 2h +1~(tk+HI-4bh)', v=I,2,3, ... ,1

q=O, when I = 0,2,4,6, ... ; q= I, when/= 1,3,5,7, ...

p = )/2, when) = 0,2,4,6, .. ,; P = (J-1)/2, when) = 1,3,5,7, ...

s, = «x-I)' + (y-hi)')I!';
x-I

cos 1/1; =--',
s,

10 2k
cos 0 0 ,2k = R'

O.2k

k-I
10,'k = Icos (2k+ I)r/J +h sin (2k+ I)r/J+ L 2h sin (2m+ I)r/J,

m=O

k-l

hO.'k = -lsin(2k+I)r/J+hcos(2k+I)r/J+ L 2hcos(2m+I)r/J,
m=O

xj = (x-I;) cos (J+ I)r/J+ (y-h) sin (J+ I)r/J, ) = 0,2,4,6" ..

y, = - (x-I) sin (J+ I)r/J+ (y-h) cos (J+ I)r/J, ) = 0,2,4,6" , ,

xi = (x-I,) cos (Jr/J) - (y-hi ) sin (Jr/J), ) = 1,3,5,7, .

Yj = (x-I,) sin (Jr/J)+ (y-h) cos (Jr/J), ) = 1,3,5,7, .

10 = 0; ho = 0,

l; = I 2h sin (2mr/J), ) = 2,4,6" ..
m=1

hi = -I 2h cos (2mr/J), ) = 2,4,6, ...
m=l

(j- I)l~

Ij = L 2hsin(2mr/J), )=1,3,5,7, .. ,
m=O

(}-1),I2

h,= L 2hcos(2mr/J), )= 1,3,5,7, ...
m=O



Antiplane inclined subsurface crack

APPENDIX B

2241

The correspondent results for the tenn with two summations in eqn (28) are (i.e. the supersonic case 1'0 > v,
and I' = 0)

r;~"O = (-1)'+' QM(k') 1m [ ~'). oS;,_"" ]
n -cos(2k'+I)1>+Jb2vl~lsin(2k'+I)1>-I'(j1J'++, 01

H[I~bd,+ c(l- I;) -Jb2 -c'(h+h,)],

rJ;~.o =.QM(k')Im[ S'I'I,.,.,(b+11:+,) OS2P"'_'J
7[ /J;r Ik+'[ -cos (2k' + 1)1>+ylb'd -1 sin (2k' + 1)1>-Vo/l.' t oJ 01

H[I-bd;+c(l- /;) - jb' -c'(h+ h, )].

Q I, [ (b+ ' .) ()S~ ]W·'·O=-M(k') 1m 11,+; _ . ~1':Lk-2

n/1 ° /3,p+" , ,[ -cos (2k' + 1)1>+ylb'vl-1 sin (2k' + 1)1>-I'o/I'~+ ,] ({

H[I-bd;+ c(l- /;) -ylb' -c'(h+h,)] df,

where

10 = 0, ho = 0.

k k

I, L 2h sin (2m1>)' hk = L 2h cos (2m1».
/11= J 11/ ~- I

(BI)

(B2)

(B3)

ylb'd -I cos (2k' + 1)1> +sin (2k' + 1)1>
M(k') = ------"'--'------'-------'---

yIb'd - I [b - c cos (2k' + 1)1> + vib' - c' sin (2k' + 1)1>]' ,

1J;;~, = ~ { - [I +c(/- I;) ~yIb' - c'(h+h,)] cos lJI; + isin lJI,[(I+ c(/- I;) -v'b' ~ c'(h +hk ))' -b'dll]2 J.
I

I --
S;P+I.,+, = d {-[I+c(/-I,)-Jb' ~c'(h+h,)]cos(lJIJ+(2p+1)1»

;

+ i sin (lJI, + (2p+ J)1>)[(1 + c(/ - I;) - yIb' - c'(h + h,))' - b'd,'] 12 },

p = j12, when j = 0,2.4.6 ... ;

p = (j-l)/2, when j = I. 3. 5. 7•.

APPENDIX C

The detailed results for the last term with three summations in eqn (28) for the supersonic case are expressed
as follows

where

SAS 33: 15-1

lX! - i"QM(k') f"' fa, ... JU" I, 'T," -, . FL.," l;.k! dlk +1.'" .dl, +',
27[" (27[i)/ -, • 'hh 'hh 'hh

bk' = ylb'-c'(h+h,)-c(/-lk Hb(d;+2I'h).

a, = f-bd,-2(1'-I)hb-ylb' -c'(h+h;)+c(l~/d,

a~ = r-bd;-2(1' -I)hb-Jb' -c'(h+I1,) + c(l-/d.

a" I = 1- bJ,-I, - I, -" . -I, - 2(1' -1·')l1b- yliI' ~C'(hThk H- c(l-/;).

[' = 2,3.4 .... I'

a;+ , = r -bd;- f, - f, -" . - f,. - 2(1' -[')hb - yIb' -c'(h+h,) + c(/- I,).

(CI)

(C2)

(C3)
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q = 0, when

q = I, when

l' = 1,3,5, ... ;

l' = 2,4,6, ..

in which the operator "Op" is "Re" (or "1m") if r is odd (or even) and

+ _ Ik+l+p_,cost/J; .sint/J; , b'd' I.'
Sl.k'_I+p_' - - +1--(tk'+I+p+2 - I) ,

5; Sj

t __ Ik'tl+p+,cost/Jj .sint/J; 2 -b'd' I.'
flk'tc+' - d +1 d (lk+l+p+' i)'

I I


